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We study, numerically, the influence of third-order dispersion (TOD) on modulation instability
(MI) in optical fibers described by the extended nonlinear Schrödinger equation. We consider two
MI scenarios. One starts with a continuous wave (CW) with a small amount of white noise, while
the second one starts with CW with a small harmonic perturbation at the highest value of the
growth rate. In each case, the MI spectra show an additional spectral feature that is caused by
Cherenkov radiation. We give an analytic expression for its frequency. Taking a single frequency
of modulation instead of a noisy CW leads to the Fermi-Pasta-Ulam (FPU) recurrence dynamics.
In this case, the radiation spectral feature multiplies due to the four-wave mixing process. FPU
recurrence dynamics is quite pronounced at small values of TOD, disappears at intermediate values
and is restored again at high TOD when the Cherenkov frequency enters the modulation instability
band. Our results may lead to a better understanding of the role of TOD in optical fibers.

I. INTRODUCTION

Third-order dispersion (TOD) plays an important role
in optical wave propagation in optical fibers. TOD is the
origin of the generation of Cherenkov radiation by soli-
tons [1]. It serves as a seeding source for super-continuum
generation in optical fibres pumped by continuous waves
[2]. It causes the emission of optical rogue waves [3, 4]. It
is also the reason for the amplification of strong solitons
at the expense of weak ones [5]. There have been quite
a few theoretical and experimental works devoted to the
study of third-order dispersion and its influence on soli-
tons [6–8]. Recently, Droques et al. [9] undertook an ex-
perimental investigation of modulation instability in the
presence of TOD. They observed symmetry-breaking of
the MI spectrum in optical fibers, and, more importantly,
an additional spectral feature that appears in otherwise-
typical MI spectra. This is a new phenomenon that the
authors confirmed numerically. However, the nature of
this spectral feature still needs a solid theoretical back-
ground and physical explanations. Such explanations are
provided in our present work.

Modulation instability (MI) is an interesting and rich
phenomenon that has attracted the attention of scientists
in various fields again and again [10–17]. This subject
has usually been addressed in two different ways. In one
case, modulation instability develops from a noisy back-
ground when the initial condition is a CW with a pertur-
bation that contains all possible frequencies of modula-
tion. Then the initial stage of evolution is dominated by
the component with the largest growth rate. However,
all other frequencies also grow, although at a slower pace
[18]. The resulting widening of spectra is the first step for
super-continuum generation in optical fibers. The second
approach to this challenge consists of perturbing the ini-
tial CW with a single frequency of modulation. When
solving this problem, fundamental phenomena like FPU

recurrence [19, 20] and sophisticated higher-order MI ef-
fects [21, 22] have been revealed.

Clearly, the question of how TOD influences each of
these two regimes also has to be split into two parts.
In this work, we consider each case separately, in order
to build a complete picture of the influence of TOD on
modulation instability. Such a complex approach has
allowed us to reveal new and unexpected ways of how
TOD influences the evolution of waves that start with
the standard MI.

II. BASIC EQUATIONS

The most common dimensional form of the nonlinear
Schrödinger equation (NLSE) for waves in optical fibers
close to the zero dispersion point is [23–25]

iΨZ −
β(2)

2
ΨTT +

n2ω0

c
|Ψ|2Ψ = i

β(3)

6
ΨTTT , (1)

where Ψ is the amplitude of the slowly-varying envelope
of the optical field, β(n) is the n-th order dispersion pa-
rameter [i.e., β(n) = ∂nβ/∂ωn evaluated at the carrier
frequency ω0], n2 is the nonlinear index of refraction
while c is the speed of light.

By using the transformation:

z = Z/λ, t = T/
√
λ, ψ =

√
n2/(2π)Ψ, (2)

where λ is the wavelength, Eq.(1) can be reduced to its
normalized form

iψz +
β2

2
ψtt + |ψ|2ψ = iβ3ψttt, (3)

where

β2 = −β(2), β3 =
β(3)

6
√
λ

(4)



2

When β3 is zero, equation (3) becomes the standard
NLSE, which is integrable. Reversing the transforma-
tions (2) we can always return to dimensional units.

The continuous wave (CW) solution of Eq.(3) is

ψ = AeiA
2z (5)

Without loss of generality, we can take A = 1, as we can
always use the scaling transformation [8] to return to an
arbitrary amplitude.

In the absence of TOD, and for positive β2, equation
(3) has a family of solutions that are presently known as
Akhmediev breathers (AB) [26, 27]. By choosing β2 = 1
without losing any generality, they are given by

ψ(t, z) =

[
1−

Ω2

2 cosh(δz) + iδ sinh(δz)

cosh(δz)− δ
Ω cos(Ωt)

]
exp(iz). (6)

This equation defines a family of solutions. The free pa-
rameter of the family is Ω; it varies in an interval between
0 to 2 and defines the frequency of the initial modulation
Ω and the initial growth rate of the modulation:

δ = Ω

√
1− Ω2

4
.

When z → ±∞, this solution becomes the plane wave
eiz+iφ with different phases φ at the two limits. Taking
into account the lowest-order modulated terms, Eq.(6)
can be approximated at z → −∞ by

ψ(t, z) =

[
1− µδ

(
Ω + i

2δ

Ω

)
eδz cos(Ωt)

]
eiz+iφ, (7)

where µ is a small real parameter and φ is the initial
phase of the CW. The exponential factor eδz in (7) clearly
shows that the solution (6) starts from modulation in-
stability. Using (7) as the initial condition in simulating
wave propagation, we can recover the solution (6). Ignor-
ing the complex factor when taking a small amplitude µ
shifts the simulations from the exact heteroclinic orbit to
a nearby periodic solution. We note that there is a non-
linear phase shift related to recurrence [28] which makes
the trajectory heteroclinic rather than homoclinic.

The discrete spectral components of (6) evolve accord-
ing to [6, 18]:

A0(z) = 1− iδ sinh(δz) + (Ω2/2) cosh(δz)√
cosh2(δz)− δ2

Ω2

(8)

An(z) =
iδ sinh δz + (Ω2/2) cosh(δz)√

cosh2(δz)− δ2

Ω2

(9)

×

Ω
cosh(δz)−

√
cosh2(δz)− δ2

Ω2

δ

|n|

where Ω and δ are the same as above. On a logarithmic
scale, the spectrum has a triangular shape [18], though
we must remember that it is discrete.

An interesting question has been raised in the recent
work of Mahnke and Mitschke [26]. Namely, how sta-
ble are ABs relative to various perturbations? The au-
thors have found that perturbations of the wave field gov-
erned by the NLSE do not destroy ABs. On the other
hand, perturbing the NLSE with a small Raman term
splits ABs into solitons - a process which is an essential
part of super-continuum generation in fibers. Generally
speaking, other perturbations that lift integrability of the
NLSE should lead to similar dynamics. TOD would be
one of these perturbations. However, the influence of
TOD is more complicated, as we can see from our sim-
ulations presented below. In order to see these compli-
cations, we have to look deeper into the mechanism of
radiation.

III. RESONANT RADIATION AND ITS
FREQUENCY

It is well-known that TOD creates radiation waves
[1]. Generally, only t-dependent solutions produce radia-
tion. A CW solution by itself does not produce radiation
waves. They appear only when the CW is split into sep-
arate pulses according to (6). As a result, we can view
small amplitude radiation waves as being generated just
as occurs in the soliton case. Here, we use the NLSE in
the form given by Eq.(3). Then, we can represent disper-
sive waves in the form

ψ = µei(kz−ωt), (10)

where µ is a small amplitude and k is the propagation
constant. The frequency then satisfies the dispersion re-
lation

−k − ω2β2/2 = −β3ω
3 (11)

In order for this radiation to be resonant with the AB
solution which serves as the source of the radiation, its
propagation constant should coincide with that of the
AB. This is a condition for Cherenkov radiation and it is
given by k = A2 = 1.

Thus, the condition for the resonance is

A2 = 1 = −ω2β2/2 + β3ω
3, (12)

and we have the following cubic equation to solve:

ω3 − β2

2β3
ω2 − 1

β3
= 0. (13)

Eq.(13) can be solved analytically [29]. For positive β2,
among the three roots, two are complex conjugates and
one is purely real. The sign of the real root coincides
with the sign of β3. This real solution

ω =
χ2 + β2χ+ β2

2

6β3χ
(14)
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where χ =
(
β3

2 + 108β2
3 + 6

√
6
√
β3

2β
2
3 + 54β4

3

)1/3

pro-

vides us with the resonant condition for dispersive linear
waves created by an AB. Despite being only an approx-
imation, our simulations presented below show that the
resonant frequency is accurately fitted by this equation.

The numerical simulations are done by solving Eq.(3)
with initial conditions consisting of a constant amplitude
field plus small complex amplitude white noise. To be
precise:

ψ(z = 0, t) = 1 + a(t) + ib(t), (15)

where a(t) and b(t) are two uncorrelated real random
functions which take values uniformly distributed in a
small interval around 0. This initial condition leads to
modulation instability within the instability band so that
the sidebands inside the gain bandwidth, i.e. for |ω| < 2,
increase their amplitudes exponentially during the initial
stages of propagation according to (7). We have chosen
the propagation distance to be z = 20, which corresponds
to a short fiber, so that the spectral component that has
the highest growth rate dominates the evolution. Logi-
cally, for each realization, when using specific values of
the random functions a and b, and for fixed propagation
distance, the spectrum appears to be noisy. In order to
have uniform results, we have averaged the output spec-
tra for a minimum of 100 different realizations. Then the
average output spectra are smooth, and the simulations
can mimic actual experiments undertaken in ([9]).
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FIG. 1. (Color online) Spectral output intensity for a propa-
gation distance z = 20, β3 = 0.01 and for various values of β2.
The two sidebands are related to modulation instability, while
the additional spectral band on the right represents the reso-
nant radiation. The green dashed line, defined by Eq.(14), is
in perfect agreement with the numerical simulations.

Here, we are interested in the average spectral out-
put of the optical fiber versus the dispersion coefficients.
Such data would describe the type of experiment pre-
sented in [9]. Figure 1 shows the shapes of the spectra
at an early fixed stage of MI evolution for various values
of β2. The value of β3 = 0.01 here is taken to be small
and fixed. The total propagation distance is also fixed at
z = 20. The spectral component, additional to the stan-
dard MI sidebands, that appears on the right-hand-side
of the spectra in Fig.1 is caused by TOD, and is well-
approximated by Eq.(14). The latter is shown by the
green dashed curve. As we can see from this figure, the
location of the resonant frequency is perfectly described
by this simple result. Our theory is also in agreement
with the numerical and the experimental results of the
work [9]. Note that the axis of β2 of Figures 1 and 2 of
[9] is inverted - the value of β2 grows downwards, which
is opposite to our choice.

Another set of data is presented in Figure 2. Here, we
have kept the value of β2 = 1 constant while β3 is changed
from 0 to 1. The resonant frequency of dispersive waves
is seen on the right-hand-side of the spectrum. It ap-
proaches the MI sideband monotonically while β3 grows
from 0 to 1. The calculation giving the white dashed
curve is based on Eq.(14). It approximates reasonably
well the spectral feature caused by the dispersive waves
at small values of β3 when the MI evolves according to
the unperturbed NLSE. Higher values of β3 significantly
influence the basic process of MI.

FIG. 2. (Color online) Spectral intensity output of the fiber
for a propagation distance of z = 20 and β2 = 1, as a function
of β3. The white dashed line is given by Eq.(14).
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IV. INFLUENCE OF RADIATION ON FPU
RECURRENCE

The influence of dispersive waves on the MI spectra is
clearly seen at small propagation distances. What will
happen when the distances increase? FPU recurrence
was observed experimentally by Van Simaeys et al. in
[19]. Will it also be seen here? Preliminary studies in
this regard have been carried out in [6]. Here, we give a
more detailed answer to the above question.

It is well-known that modulation instability in the
NLSE, when started with a single sideband, results in
recurrence. This is called Fermi-Pasta-Ulam recurrence:
the dynamical system returns to the same state of sin-
gle mode excitation from which the dynamics started.
This process is perfectly described by the AB solution
(6) [20, 28]. Observation of the FPU recurrence requires
more accurate initial conditions than in (15). We have
to use strictly periodic initial conditions like (7), rather
than CW with a random perturbation. Thus, as initial
conditions in the numerical simulations below, we took a
constant amplitude field, slightly modulated with a fre-
quency ω located within the instability band:

ψ(z = 0, t) = 1 + µ cos(ωt), (16)

where µ is a small constant. With this initial condition
and µ complex, as in (7), and with β3 = 0, the field
governed by the NLSE evolves according to Eq.(6). De-
viations from the exact initial conditions, such as taking
µ to be real instead of complex, results in a deviation
from the exact heteroclinic trajectory, thus producing
periodic evolution. In the following simulations we use
small µ = 0.0001, and ω =

√
2. This frequency produces

the highest MI gain for a field amplitude 1. Here, and in
the rest of the paper, we assume β2 = 1.

Now, we turn to the case of nonzero β3. Figure 3 shows
the spectrum evolution of the solution that starts with
the initial condition (16). For a small value of β3 (=0.01),
the solution is close to (6) with a spectrum close to that
defined in (8). The first expansion of the spectrum at
z ≈ 10 is indeed very close to the analytic expression.
The spectrum starts to evolve periodically as the hete-
roclinic orbit is transformed to periodic motion for any
small perturbation. A small amplitude spectral feature,
corresponding to the dispersive waves, is clearly seen on
the right-hand-side of the spectrum. The value of the
radiation frequency is indeed given by the resonant con-
dition (14). It is indicated by the blue dashed vertical
line in this figure. The radiation component grows dur-
ing propagation, as some is emitted each time when the
optical field splits into pulses. For the small value of
β3 considered in this example, the influence of radiation
on the AB is almost negligible. Thus, recurrence to the
plane wave occurs for many periods of evolution. Three
of them can be seen in Figure 3, and periodic evolution
continues well after z = 50.

For higher values of β3 the recurrence is restricted to
only a few cycles. Increasing β3 up to 0.02 firstly leads to
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FIG. 3. (Color online) Recurrence spectrum of the NLSE
with small TOD, namely β3 = 0.01, while β2 = 1. The TOD
resonant radiation can be seen on the right-hand-side of the
spectrum. Its position is indicated by the dashed blue line.
Its influence is negligible until the radiation grows to higher
amplitudes and distorts the initially symmetric AB spectrum.
However, this distortion occurs at very long propagation dis-
tances. The two red vertical lines show the limits of the mod-
ulation instability region (±2). The initial condition contains
only a single pair of sidebands at the maximum growth rate
(ω =

√
2. The periodicity is preserved on propagation by

imposing periodic boundary conditions, such that the whole
spectrum remains discrete. The discreteness cannot be seen
on this plot and in the plots below, since the curves are drawn
by joining the discrete spectrum values with straight lines.
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FIG. 4. (Color online) The same as in Fig.3, except that the
TOD is higher: β3 = 0.02. According to Eq.(14), TOD reso-
nant radiation is now closer to the pump. It hardly influences
the first recurrence, but due to the four-wave mixing (FWM)
process through the pump, the resonant radiation appears
almost symmetrically on the left-hand-side of the spectrum.
Moreover, an additional “sideband” of the resonant radiation
appears at an equal distance on the right-hand-side of the
spectrum. The asymmetry between the l.h.s. and r.h.s of the
spectrum is due to the delay in the transfer of the spectral
energy to the left-hand-side of the spectrum. The influence of
the radiation is stronger than in the previous case, as the ra-
diation appears on top of stronger spectral components. The
radiation accumulates faster and recurrence survives shorter
distances. Four cycles of recurrence can be seen here.
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the shift of the resonant frequency, which becomes closer
to the pump frequency. Secondly, it leads to the intensity
increase of the radiation waves. The results are shown
in Fig.4. Another significant difference from the previ-
ous case is that the resonant radiation also appears on
the left-hand-side of the spectrum due to the four-wave-
mixing (FWM) process. These radiation components of
the spectrum are repeated at equal spectral intervals on
the left and right-hand-sides of the initial resonant fre-
quency. The latter is indicated by the vertical dashed
blue line. As a result, we obtain an equi-distantly lo-
cated comb of dispersive spectral components on top of
the original AB spectrum, with amplitudes that grow
continuously, but very slowly. These components are
hardly visible at the first appearance of the triangular
AB spectrum, but they significantly disturb the triangu-
lar spectra repeatedly appearing in the subsequent evolu-
tion. The level of disturbance is still small for β3 = 0.02,
and clear FPU recurrence can be observed at least four
times in this figure. The period in z is reduced here due
to a higher level of deviation from the heteroclinic tra-
jectory.
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FIG. 5. (Color online) The same as in Figs.3 and 4, except
that the TOD is further increased to β3 = 0.04. TOD reso-
nant radiation (shown by the blue dashed line) is now much
closer to the pump, but is still out of the instability band
shown by the red dashed lines. The four-wave mixing process
through the pump adds distortions on each side of the spec-
trum. The resonant radiation appears at higher values of the
background spectrum, thus increasing its influence. It accu-
mulates much faster and FPU recurrence is lost right from
the first broadening of the spectrum. No cycles of recurrence
can be seen here.

A further increase of β3 to 0.04 leads to dispersive spec-
tral features being even closer to the pump frequency.
This is clearly seen in Fig.5. The first expansion of the
spectrum is close to the AB spectrum. Further evolution
is greatly influenced by the FWM of the pump and ra-
diation. Higher amplitudes of radiation waves result in
the complete loss of FPU recurrence after the first cy-
cle. The spectra evolve irregularly, though they retain a
roughly triangular shape, with the dispersive comb still
being visible for short distances of propagation.

The above results are summarized in Fig.6. It shows
the evolution of the peak amplitude, which occurs at
t = 0, for the initial condition given by Eq.(16) for three
values of β3 used in the simulations. In all three cases,
the initial stage of evolution is an exponential growth of
the perturbation, just as the AB solution predicts. Con-
sequently, the three curves almost coincide up to z = 12.
When β3 = 0.02, the following evolution of the peak am-
plitude shows almost perfect periodic behavior, demon-
strating four clear recurrences up to the distance z = 50.
Much better recurrence evolution can be observed at
smaller values of β3 ( not shown here). At higher val-
ues of β3 (say 0.03), the recurrence is still observable,
but it becomes less regular. The value β3 = 0.04 is criti-
cal (blue dashed curve). In this case, the peak amplitude
follows the recurrence trend only once. The subsequent
evolution becomes completely irregular.

FIG. 6. (Color online) Field evolution, starting with modula-
tion instability, for three small values of TOD. The solid red
curve is for β3 = 0.02, the green dotted line is for β3 = 0.03,
and the blue dashed curve for β3 = 0.04. Up to z = 12, the
three curves almost coincide. Multiple recurrence is clearly
seen at the initial stages of evolution for the smallest values
of β3. Increasing the value of the TOD parameter causes the
periodic behavior to deteriorate.

V. RECOVERY OF FPU RECURRENCE AT
HIGHER VALUES OF β3

There are two characteristic frequencies in this prob-
lem. One is the upper limit of modulation instability
and the second is the resonant frequency. Looking at
Fig.2, we can find that the resonant frequency enters the
MI instability band ω = 2 at around β3 = 0.4. We can
expect that the MI dynamics will drastically change at
that point. Amazingly, the FPU recurrence is completely
restored above β3 = 0.4. This happens because the res-
onant frequencies enter modulationally unstable dynam-
ics, rather than evolving as independent components. In-
stability within the MI band completely dominates the
growth of radiation waves. Figure 7 shows the spectral
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evolution when β3 = 1.0. We can clearly see the three
growth-return cycles of the MI dynamics up to a distance
of just z = 50. Periodic dynamics is repeated for much
larger distances.
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FIG. 7. (Color online) FPU recurrence dynamics of MI with
almost perfect triangular spectrum of the sidebands when
β3 = 1.0. The resonant frequency here is within the MI band.
It defines the fundamental frequency of the sidebands.

Figure 8 resumes our observations. When β3 = 0.3,
the dynamics is chaotic (red curve). The resonant fre-
quency here is still out of the instability band. For the
values β3 = 0.4 (green dashed curve) and β3 = 0.5 (blue
dashed curve), the resonant frequency enters the insta-
bility band and we can see increasingly improved FPU
recurrence dynamics as β3 increases, at least up to a dis-
tance of z = 50. Generally, there is no qualitative reason
for FPU dynamics to stop above these values. Our sim-
ulations with β3 increasing indefinitely still show perfect
recurrence.

FIG. 8. (Color online) Optical field evolution, starting with
modulation instability for three larger values of TOD: the
red solid line stands for β3 = 0.3, the green dotted line for
β3 = 0.4 and the dotted blue line for β3 = 0.5. Recurrence,
which was lost for small values of β3, starts to be seen again
for larger values of TOD, namely for β3 > 0.3.

Figure 9 shows the evolution of the MI sidebands when

β3 = 1.0. As we can see, after the first cycle of recurrence
dynamics, the sidebands disappear until the second cycle.
This is a clear indication of the FPU recurrence process.
All the energy returns to the pump frequency between the
cycles. The trajectories in this process of dynamics are
much closer to the heteroclinic ones than at lower values
of β3. The general conclusion is that, with β3 increasing
above 0.4, the FPU recurrence is recovered. In this sense,
TOD has physics that is different from that of the Raman
effect in the studies of Mahnke and Mitschke [26].
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FIG. 9. (Color online) Evolution of the two nearest sidebands,
±ω1 and ±ω2, in the MI recurrence dynamics at β3 = 1.0.
The plus (red curves) and minus (blue curves) signs denote the
r.h.s. and l.h.s. sidebands, respectively. The first sidebands
(b) are almost symmetric while the second sidebands (a) have
significant amount of asymmetry.

To further confirm the above conclusion, we have con-
structed trajectories in the complex plane of the solution.
Figure 10 shows the recurrent feature of the trajectories
on the complex plane of ψ(z, t) for three values of β3. As
expected, at low values of β3, (red curve) the trajectory
is close to the original one, defined by the AB solution
(green curve). Only the case of the maximum growth
rate is shown here. At a high value of β3 the trajectory
(blue curve) becomes qualitatively different, but remark-
ably it is also recurrent. In order to prevent rotation
of the trajectories in the complex plane, the propagation
constant q in the exponential has been shifted to the new
value shown in this figure.

VI. CONCLUSIONS

In conclusion, we have studied the influence of TOD
on modulation instability of CW solutions of the NLSE.
We have shown that, for a randomly perturbed CW,
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FIG. 10. (Color online) Recurrent trajectories of MI dynamics
for β3 = 0 (green curve), β3 = 0.02 (red curve) and β3 = 1
(blue curve).

TOD results in resonant radiation waves caused by the
Cherenkov effect, and we have obtained a very good es-
timate of the frequency of this radiation. On the other
hand, when the CW is perturbed with a single frequency,
the radiation is multiplied due to the four-wave mixing
effect. This causes the normally-recurrent solution to be

converted into an aperiodic one. An interesting finding
is that the periodicity is improved and the radiation dis-
appears at higher values of the TOD coefficient, when
the resonant frequency enters the modulation instability
band.

The first part of our results have been observed in the
experimental work of Droques et al. [9], and here we
have given the theoretical background for these fascinat-
ing observations, as well as supplying the frequency of the
additional peak in the spectra. Clearly, these estimates
can be used for extracting the parameters of the fiber
from experimental data. The second part of our results
awaits future exciting experimental observations. These
observations can be made at frequencies close to the zero
dispersion point of the fiber, where TOD is comparable
to second-order dispersion.
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